3,586 research outputs found

    Mean Field Approach for a Statistical Mechanical Model of Proteins

    Full text link
    We study the thermodynamical properties of a topology-based model proposed by Galzitskaya and Finkelstein for the description of protein folding. We devise and test three different mean-field approaches for the model, that simplify the treatment without spoiling the description. The validity of the model and its mean-field approximations is checked by applying them to the β\beta-hairpin fragment of the immunoglobulin-binding protein (GB1) and making a comparison with available experimental data and simulation results. Our results indicate that this model is a rather simple and reasonably good tool for interpreting folding experimental data, provided the parameters of the model are carefully chosen. The mean-field approaches substantially recover all the relevant exact results and represent reliable alternatives to the Monte Carlo simulations.Comment: RevTeX-4, 11 pages, 6 eps-figures, To Appear on J.Chem.Phy

    Universal Description of Granular Metals at Low Temperatures: Granular Fermi Liquid

    Full text link
    We present a unified description of the low temperature phase of granular metals that reveals a striking generality of the low temperature behaviors. Our model explains the universality of the low-temperature conductivity that coincides exactly with that of the homogeneously disordered systems and enables a straightforward derivation of low temperature characteristics of disordered conductors.Comment: 4 pages, 1 figur

    General solution of equations of motion for a classical particle in 9-dimensional Finslerian space

    Full text link
    A Lagrangian description of a classical particle in a 9-dimensional flat Finslerian space with a cubic metric function is constructed. The general solution of equations of motion for such a particle is obtained. The Galilean law of inertia for the Finslerian space is confirmed.Comment: 10 pages, LaTeX-2e, no figures; added 2 reference

    Suppression of superconductivity in granular metals

    Full text link
    We investigate the suppression of the superconducting transition temperature due to Coulomb repulsion in granular metallic systems at large tunneling conductance between the grains, gT1g_{T}\gg 1. We find the correction to the superconducting transition temperature for 3DD granular samples and films. We demonstrate that depending on the parameters of superconducting grains, the corresponding granular samples can be divided into two groups: (i) the granular samples that belong to the first group may have only insulating or superconducting states at zero temperature depending on the bare intergranular tunneling conductance gTg_T, while (ii) the granular samples that belong to the second group in addition have an intermediate metallic phase where superconductivity is suppressed while the effects of the Coulomb blockade are not yet strong.Comment: 4 pages, 3 figure

    Renormalization of hole-hole interaction at decreasing Drude conductivity

    Full text link
    The diffusion contribution of the hole-hole interaction to the conductivity is analyzed in gated GaAs/Inx_xGa1x_{1-x}As/GaAs heterostructures. We show that the change of the interaction correction to the conductivity with the decreasing Drude conductivity results both from the compensation of the singlet and triplet channels and from the arising prefactor αi<1\alpha_i<1 in the conventional expression for the interaction correction.Comment: 6 pages, 5 figure

    Effects of fluctuations and Coulomb interaction on the transition temperature of granular superconductors

    Full text link
    We investigate the suppression of superconducting transition temperature in granular metallic systems due to (i) fluctuations of the order parameter (bosonic mechanism) and (ii) Coulomb repulsion (fermionic mechanism) assuming large tunneling conductance between the grains gT1g_{T}\gg 1. We find the correction to the superconducting transition temperature for 3dd granular samples and films. We demonstrate that if the critical temperature Tc>gTδT_c > g_T \delta, where δ\delta is the mean level spacing in a single grain the bosonic mechanism is the dominant mechanism of the superconductivity suppression, while for critical temperatures Tc<gTδT_c < g_T \delta the suppression of superconductivity is due to the fermionic mechanism.Comment: 12 pages, 9 figures, several sections clarifying the details of our calculations are adde

    Electron Interactions in Bilayer Graphene: Marginal Fermi Liquid Behaviour and Zero Bias Anomaly

    Full text link
    We analyze the many-body properties of bilayer graphene (BLG) at charge neutrality, governed by long range interactions between electrons. Perturbation theory in a large number of flavors is used in which the interactions are described within a random phase approximation, taking account of dynamical screening effect. Crucially, the dynamically screened interaction retains some long range character, resulting in log2\log^2 renormalization of key quantities. We carry out the perturbative renormalization group calculations to one loop order, and find that BLG behaves to leading order as a marginal Fermi liquid. Interactions produce a log squared renormalization of the quasiparticle residue and the interaction vertex function, while all other quantities renormalize only logarithmically. We solve the RG flow equation for the Green function with logarithmic accuracy, and find that the quasiparticle residue flows to zero under RG. At the same time, the gauge invariant quantities, such as the compressibility, remain finite to log2\log^2 order, with subleading logarithmic corrections. The key experimental signature of this marginal Fermi liquid behavior is a strong suppression of the tunneling density of states, which manifests itself as a zero bias anomaly in tunneling experiments in a regime where the compressibility is essentially unchanged from the non-interacting value.Comment: 12 pages, 3 figure

    A model for the accidental catalysis of protein unfolding in vivo

    Get PDF
    Activated processes such as protein unfolding are highly sensitive to heterogeneity in the environment. We study a highly simplified model of a protein in a random heterogeneous environment, a model of the in vivo environment. It is found that if the heterogeneity is sufficiently large the total rate of the process is essentially a random variable; this may be the cause of the species-to-species variability in the rate of prion protein conversion found by Deleault et al. [Nature, 425 (2003) 717].Comment: 5 pages, 2 figure

    Giant suppression of the Drude conductivity due to quantum interference in disordered two-dimensional systems

    Full text link
    Temperature and magnetic field dependences of the conductivity in heavily doped, strongly disordered two-dimensional quantum well structures GaAs/Inx_xGa1x_{1-x}As/GaAs are investigated within wide conductivity and temperature ranges. Role of the interference in the electron transport is studied in the regimes when the phase breaking length LϕL_\phi crosses over the localization length ξlexp(πkFl/2)\xi\sim l\exp{(\pi k_Fl/2)} with lowering temperature, where kFk_F and ll are the Fermi quasimomentum and mean free path, respectively. It has been shown that all the experimental data can be understood within framework of simple model of the conductivity over delocalized states. This model differs from the conventional model of the weak localization developed for kFl1k_Fl\gg 1 and LϕξL_\phi\ll\xi by one point: the value of the quantum interference contribution to the conductivity is restricted not only by the phase breaking length LϕL_\phi but by the localization length ξ\xi as well. We show that just the quantity (τϕ)1=τϕ1+τξ1(\tau_\phi^\ast)^{-1}=\tau_\phi^{-1}+\tau_\xi^{-1} rather than τϕ1\tau_\phi^{-1}, where τϕT1\tau_\phi\propto T^{-1} is the dephasing time and τξτexp(πkFl)\tau_\xi\sim\tau\exp(\pi k_F l), is responsible for the temperature and magnetic field dependences of the conductivity over the wide range of temperature and disorder strength down to the conductivity of order 102e2/h10^{-2} e^2/h.Comment: 11 pages, 15 figure

    Diffusion and ballistic contributions of the interaction correction to the conductivity of a two-dimensional electron gas

    Full text link
    The results of an experimental study of interaction quantum correction to the conductivity of two-dimensional electron gas in A3_3B5_5 semiconductor quantum well heterostructures are presented for a wide range of TτT\tau-parameter (Tτ0.030.8T\tau\simeq 0.03-0.8), where τ\tau is the transport relaxation time. A comprehensive analysis of the magnetic field and temperature dependences of the resistivity and the conductivity tensor components allows us to separate the ballistic and diffusion parts of the correction. It is shown that the ballistic part renormalizes in the main the electron mobility, whereas the diffusion part contributes to the diagonal and does not to the off-diagonal component of the conductivity tensor. We have experimentally found the values of the Fermi-liquid parameters describing the electron-electron contribution to the transport coefficients, which are found in a good agreement with the theoretical results.Comment: 11 pages, 11 figure
    corecore